High angular resolution diffusion imaging probabilistic tractography of the auditory radiation.

نویسندگان

  • J I Berman
  • M R Lanza
  • L Blaskey
  • J C Edgar
  • T P L Roberts
چکیده

BACKGROUND AND PURPOSE The auditory radiation crosses other white matter tracts and cannot reliably be delineated or quantitatively assessed with DTI fiber tracking. This study investigates whether HARDI fiber tracking can be used to robustly delineate the full extent of the tract. MATERIALS AND METHODS HARDI (64-direction, b=3000 s/mm²) and DTI (30-direction, b=1000 s/mm²) were acquired from 25 control participants between 8 and 26 years old. Probabilistic HARDI and DTI fiber tracking of the auditory radiation was performed with starting and filter regions automatically generated from the FreeSurfer white matter parcellation. DTI fiber tracking was performed with both the 64-direction and the 30-direction datasets. Fiber-tracking trials demonstrating connectivity from the Heschl gyrus to the medial geniculate nucleus were considered successful. RESULTS The HARDI fiber tracking success rate was 98% and was significantly higher than the 64-direction DTI rate of 50% or the 30-direction DTI rate of 42% (P < .001). The success rates of HARDI fiber tracking for the left and right auditory radiations were not significantly different. In contrast, the left auditory radiation was successfully delineated with DTI fiber tracking at a higher rate than the right auditory radiation. CONCLUSIONS HARDI can discriminate the complex white matter pathways at the junction of the auditory radiation and the ILF. HARDI fiber tracking can reliably delineate the auditory radiation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review

Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

Optic Radiation Fiber Tractography in Glioma Patients Based on High Angular Resolution Diffusion Imaging with Compressed Sensing Compared with Diffusion Tensor Imaging - Initial Experience

OBJECTIVE Up to now, fiber tractography in the clinical routine is mostly based on diffusion tensor imaging (DTI). However, there are known drawbacks in the resolution of crossing or kissing fibers and in the vicinity of a tumor or edema. These restrictions can be overcome by tractography based on High Angular Resolution Diffusion Imaging (HARDI) which in turn requires larger numbers of gradien...

متن کامل

Rethinking the role of the middle longitudinal fascicle in language and auditory pathways.

The middle longitudinal fascicle (MdLF) was originally described in the monkey brain as a pathway that interconnects the superior temporal and angular gyri. Only recently have diffusion tensor imaging studies provided some evidence of its existence in humans, with a connectivity pattern similar to that in monkeys and a potential role in the language system. In this study, we combine high-angula...

متن کامل

Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution.

Constrained spherical deconvolution (CSD) is a new technique that, based on high-angular resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber populations within regions of complex white matter architecture, thereby overcoming the limitations of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber tractogr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 34 8  شماره 

صفحات  -

تاریخ انتشار 2013